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E : Stochastic Filtering and Control of

Linear Systems: A General Theory

A. V. Balakrishnan T

University of California Los Angeles

A large class of filtering and control problems for linear systems
can be described as follows. We have an observed (stochastic) process 1
y(t) (say, an m= 1 vector), t representing continuous time,

0 <t<T<=. This process has the structure:

y(t) = th) + ng (1)

where no(t) is the wnavoidable measurement error modelled as a white
Gaussian noise process of known spectrzl density matrix, taken as the
Identity matrix for simplicity of notation. The output v(t) is composed
of iwo parts: the response to the control input u(t) and a random
'disturbance’ nL(t) (sometimes referred to as 'load disturbance' or
'stale noise') also rodellad as staticnary Gaussian; we also assume the
system respending to the control is linear and time-invariant so that we
have:

| B{t-s) u(s)ds + n, (1)

0

vhere  u(e)  is always assumed to be locally square integrable, and

T Rffcvwcl\ Swppovted " 74" undev 9,’::\”# no- 73*&492) Af)p/&"c‘{

Mot eonatic; Division , RFosR y - USAF.




R e i e ) e ' Bl o B e ma M e VIR « s bt - oo s, - SOURPSG A ———

00
where B(+) is a 'rectangular' matrix function and J ||B(t)||2dt <® .
0

We assure further more that the random disturbance is 'physically realizable'
so that we can exploit the representation:

t
nL(t) = J F(t-p) N(p) dp
0

where TF(P) is a rectangular matrix such that
2
rHF(s)H ds <
0
where, in the usual notation,
2 %
[1A]]© = Tr. AA%.

We assume that the process nL(t) is independent of the cbservation

noise process no(t) .

It is more convenient now to rewrite the total representation as:

y(t,w) = v(t,w) + Guw(t)
vit,w) = I B(t-s) u(s)ds + ! F(t-s) w(s)ds
0 0
where
eek = I
F(t)G* = 0

w(*)  is vhite noise process in the appropriate product Euclidean space,

and

r[ |7 ]2t <o
0
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e hasten to point out that we may replace the white noise formalism

by a 'Wiener process' formalism for th= above as:

t
Y(t,w) = I vis,w)ds + G W(t,w)
0
t Re
v(t,w) = I B(t-s)u(s)ds + I F(t-s)di(s,w)
0 0

It makes no difference to the theory that follows as to which formalism
is used. The optimization problem we shall consider is a stochastic
control ("regulator") problem in which the filtering problem is implicit:
to minimize the effect of the disturbance on the output (or sore

components of it). More specifically, we wish to minimize:

t

E I [Qult,w), Quit,w)ldt
0

1.2y

t
+ E f [ut,w), ult,w)ldt
0

E denoting expectation, where for each t, u(t,w) must 'depend' only

upon the available observation up to time t. Ve can show [1] that under

the representation (1.1), (1.2), the optimal control may be sought in the

class of 'linear' controls of the form:

; bt
u(t,w) = J K(t,s)d¥(s,w)ds oo W0lte Section
0 T burt Seey,

' iXCEa e

. ATion.
2 g < qv el arl DS
in the Wiener process formalism, or by ey

12 e

I AT
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! K(t,s) y(s,w)ds
0
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in the white noise formalism.

This problem embraces already all the stochastic control problems
for s-yst;e:n:s- gc;vegnéa by ordinary differential equations by taking the
special case where the laplace transforms of B(:) and &(-)
are rational. But it also includes a wide variety of problems involving
partial differential equations where the observation process  Y(t)
for each t Thas its range in a finite dimensional Euclidean space
(measurements at a finite number of points in the domain or on the boundary
for example). One m:ay argue that any physical measurement must be finite
dimensional; in any case, the extension to the infinite dimensional case

brings little that is new, and we shall not go into it here.

As a simple example of a non-raticonal case we may mention:

F(t) = t_e‘/2 1/t

arising fran boundary input in a half-infinite rod [5]. Note that the
associated process nL(t) is not 'Markovian' even in the extended

sense [2].

To solve our problem, our basic technique is to create an 'artificial'
state space representation for (1.1). It is artificial in the sense that
it has nothing to do with the actual state space that originates with the
problems. We shall illustrate this with a specific example below. Without
going into the system theoretic aspects involved, let us simply note that
the controllable part of the original state space can be put in one-to-one

correspondance with the controlleble part of the artificial state space.

(1.w)
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let H denote Lz[O,m;fgn] where m is the dimension of
the observation process. Let A denote the operator with domain in H:
, D(A) = [feH | #(+) is absolutzly continuous with derivative
1 : fl(°) € H alsol,

and

Af = £

Let B denote the operator mapping the Euclidean space in which the

% controls rangs, into H by:

B u(t) ~ B(Qlu(t) ,0<g <

and similarly
' Fuo(t) ~ F@Quw(t) 0<z <w

Assume now that F(t) and B(t) are 'locally' continuous, in

0 <t<w.  Then we claim that (1.1) is representable as (a parti=l

diSferential eanatiom ’)
x(t) = A x(t) + Bu(t) + Fuw(t) ; x(0) = 0.
(1.5)
y(t) = C x(t) + Gu(t)

(or appropriate 'Wiener-process' version), where C is the operator

defined by:

Domain of C = [feH | f(t) is continuous in 0 < t < ]




[or, f(+) is '"locally' continuous] and

Cf = £(0)
[value at the origin of the 'continuous function' representative

of f()].

We can readily show that x(t) is in the domain of C because of the
assumption®of local continuity. On the other hand we do not need to make
the 'exponential rate of growrth' assumptions as in the earlier version of
the representation [ 3 ]. To see this we have only to note that (1.5) has
the solution. (assuming that u(+) 1is locally square integrable):

t t

S(t-0)Bu(o)do +I S(t-0) Fwlo)do . : (1.5)

x(t) = J
0

0

where S(t) 1is the semigroup generated by A . Now

/

t
h(t) = [S(t—d) Bu(o)do 1is the function:
0
t
h(t,z) = f B(z+ t-0) u(o)do 0<g<ew
0

and h(t,z) is locally continuous in 0 < g < =, because of the
local continuity of B(*). Hence h(t) 1is in the domain of C, for each <.

Moreover

t
C h(t) = f B (o) ol
0

Similarly




e Iix
Cf S(t-0) Fw(o)do = J F(t-0)w(o)do
0 0
which suffices to prove the representation. Of course to complete the
representation we have that the cost functional (1.2) can be written:

t t 2

E f [QCx(t), qcx(t)ldt + E f Cult), ult)ldt (1.6)

0 , 0 e
In this fcfm we have a stochastic control problem in a Hilbert
Space, and we may apply the techniques of [ 4 ]; except for the complication
that C is now unbounded, uncloseable. The 'operators' B and & are

Hilbert-Schmidt and in this sense there is a simplification.

Even though C is uncloseable, let us note that

t t
x(t) = ! B(t-0) u(o)do + I F (t-0)uw(o)do
0 0 !
and hence is actually locally continuous in 0 < t, and
i
P I
glp) = f C S(p-0) F£(o)do 0<p<t

0

defines a linear bounded transformation on

W () = L, ((O,t), Rn)
where R is the Euclidean space in which w(t) ranges, into
Wyt = 1, (0,003 )

for each 0 < t. We shall only consider u(t) such that

- .

ﬂ ‘ | -




u(t) = I L (t,s) y(s)ds 0<t<T

where ————————

t
gt) = I L (t,s) f(s)ds O E
0

defines a Hilbert-Schmidt operator mapping WO(T)
where

WC(T) = Lz[(O,T); Rp]

where Rp is the real Euclidean space in which
every t . The Hilbert-Schmidtness implies that

Schmidt aiso a. e. and that

Tk
[fnut,s)n? g ek
0 1] HeS

It is not difficult to see that

t
u(t) = I L(t,s)y(s)ds
0
t
x(t) =
0 0
y(t) = C x(t) + G w(t)

defines x(*) uniquzly, for each w(¢).

t ;
I Staia) B wlolds +[ S(t=0) Fulc)de :

(1.7)

into WC(T)

u(t) ranges for

L(t,s) is Hilbert-




2. The Filtering Problem.

~ Let us first consider the filtering problem for (1.1) taking
u(*) to be identically zero. We shall see that this is an essential step

in solving the control problem. Thus let, in the notaticn of Section 1,

T
x(t,w) = I S(t-0) Fwl(o)do

s 2.1
ywWt,w) = Cx(t,w) + Gu(t)

As we have noted earlier, the only difference from the standard problem

treated in [4] is that C is uncloseable. Nevertheless since

t
x(t,w) = I F(t—0) wl(o)do
0

and is continuous in t for each w, we note that, denoting by yt(w)

the element in Wo(t) defined by

yis,w), 0O0<s <t

we see that vy 1:(m) is a weak Gaussian randam variable with finite second
moment in wo(t) for each t. Moreover Yy has the covariance
operator:

I+ L’

3 §

where L(t) 1is defined by

P
Me)f =g ; glp) = [ F(p=0) f(o)ddo 0 <p<t,
0

«fe
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and is linear bounded on Wn(t) into wo(t); and I 1is the identity

operator on wo(w. Let
&(t,w) = E [x(t,w) | v ()]

Then %(t,w) belongs to the domain of C for each t

and further

C %(t,w) = -E [Cx(t,w) | v ()]

the novelty in this relation arising from the fact that C is unbounded.

and each

This can be seen readily as follows. We note that (see [4])

-1
X0 = B Dx(t,w) v 1 1 + L) L™
where
i t
E [x(t,w) yt(m) J £ = f K(t,s)f(s)ds
0
where

o ;
K(t,p) = sct—p)f Sp-0)F Flp=c) &
0

and the corresponding element in H is given by

t ¢p 2
f F(t-ptg) F(p-0) do f(s)ds, 0<g <=
0

-10-

yt(m)

€2.2)

(2.3)




H and is locally continuous in 0 <t¢ , forany #(-) in wo(t).
Hence it follows that x(t,w) is in the domain of C for each t
’ i and w and further a simple verification establishes (2.2) since the

right side of (2.2) is given by

E [Cx(t,0) y, ("] [T + L(t) Len*?

and for any f in WO(t):
G

% %
E [cx(t,w) yt(w) J£= CE =t yt(w) 1#
Relation (2.2) enables us to extend the arguments in [4] to show that
z(t,w) = y(t,w) - Cx(t,w) 0<t<T

is again white noise. Let P’c(t) denote

E [ (xCtsw) - &(tw) (3t = Ret0)) *]

% A *
Then P;(t) = E [x(t,w) x(t,w) ] - E [&(t,w) x(t,w) ] and it follows
that Pf(t) maps into the domain of C. The covariance cperator of

y(¢) as an element of WO(T) has the form

(I + R)

where R is Hilbert-Schmidt and hence the Krein factorization thecrem

(the Kernels being strongly continuous) as in [4] yields

~11-




(S VR G 7 MG M)
where Z is volterra and
z(+,0) = (I-2) y(,w)
Moreover
(-1 =1+m
where M  is Hilbert-Schmidt also. Hence we can write
;<(',w) = Tz(* ,w)
where
t

Tf = g; glt) = f J(t,0) z(o,w)do
0 i

and following [4] we must have that

%
J(t,0) = S(t-g) (C P,c(o)) (2.w)
so that
t 17
P,c(t)x = f S(0)# F%S(0)*xdo - f S(t-o)(C P;(o))”-'(c P;(G))S”-‘(t—o)dd
0 0
and in turn we have that, for X and y in the doman of

3




[ﬁf(t)x,y] ® [Pf(t)X,A*y] + [Pf(t)y, A%x]

Pf(O) = 0.

Purther we have:

§(t,w)

0

t e
- f S(t-g) (C Pf(o)) C x(o,w) do
0

t %
+ f S(t-0) (C Pf(o)) y(o,w) do
0

t

het) = = f S(t-0) (C pf<o))*c (o) do-

0

and hence we can deduce that:

C S(t-0) (C pfcc)>*(c hia)Y &5

C h(*) rmust be zero. Hence

~]3-

- ) . Pt O e + [ Fx, Zy]l - [C P}(t) %, C Pf(t)y];

t - b
['S(t—c) (c Pf(o)) (y(o,w) - Cx(o,w)) do

This is an 'integral equation' that x(t,w) satisfies. Moreover (2.6)
has a unique solution. For suppose there were two solutions

§2(t,m). The difference, say h(t), (fixing the w), would satisfy

But C h(¢) is an element of LZ(O,T) and the right-side defines a

Hilbert-Schnidt Velterra transformation which is then quasinilpotent.

{2.5)

(2.6)

Hence




C X, (t,w) = C X, (t,u)
Hence  z(t,w) remains the same:

ylt,w) = C Qlct,u) = y(t,w) - C ﬁz(t,m)

1

z(t,w)

But

1"

t
f J(t,0) z(o,w)ds
0

x(t,w)

proving the uniqueness of solution of (2.6). We could also have deduced
this from the uniqueness of the Krein factorization. We can also rewrite

(2.6) in the differential form in the usual sense (see [4]):

R(tw) = Aa(t,w) + (€ P (y(t,0) = C X(t,0))

1
o

Q(O,w) =

yielding thus a generalization of the Kalman filter equations. Let us note

in passing here that

A- (CRLnC

is closed on the domain of A and the resolvent set includes the open right

half plane. It does not however generate a contraction semigroup for t > 0.

The proof of uniqueness of soluticn to (2.5) can be given by invcking the
dual control problem analogous to the case where C is bounded, as in [4] but

will be omitted here because of limitation of space. From this it will also

~14-
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follow that [Pf(t)x,x] is monotone in t.

Let Qn be defined on H by:
1/n

Cf=gs glt)=n I f£(s)ds.
& 0

Then Cn is bounded. Hence it follows that
E (Cn x(t,w)) (Cn x(t,w)%)

15
= fo (C, S(@).#) (C_ S(o).F)¥do,

and as n goes to infinite, the left side converges strongly and the right

side yields

C (CR(t;£))* ; R(t,t) = E [x(t,w) x(t,w)*],

In a similar manner we can show that

E [ (C %(t,w) (C %(t,w) *] = ¢ (¢ Ret,00)* 5

E [x(t,w) %(t,w)*] = R (t,t)

E [(c (x (t,0) - 2t,0)) (€ x(t,0) - C K(t,w) ]
J:
= C (C P;(t))
We are of course most interested in the case T + o, We have

seen that [Pf(t) X,x] 1is monotone. Also

t ;
[Pf(t)x,x] < [R (tyt)xyx] = [ [SCo) # ##5(0)*x,x]do
0

=G




Let us assume now that
& 2
[ NFssomdl e = Ry <o
0

(This is clearly satisfied in our examle (1.4)).

Then Pf(t) also converges strongly, to P, say; further

o]

maps into the domain of C and satisfies

%=&-.Imwmgfm%mwﬂw
0

and hence also the algebraic equation:

0 = [P x,A%y] + (P_y,A%] + [Fx,F%y] - [ C Px,C P y]
which has a unique solution.

3. The Control Problem.

Because of space limitations, we shall have to limit the

presentation to the main results, emphasing only the differences arising

due to the unboundedness of C. Thus, defining as in [%, Chapter 6], and

confining ourselves to controls defined by CLa7)5s

x(t,w) - xu(t,w) x(t,w)

C %X(t,w) + Gu(t) = §(t,w)

where

iu(t,w> = A x(t,w) + B ult,w)

~16~
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we can invoke the results of section 2 to obtain that

2t @) = () — C x(tW)

where

x(t,w) = E [X(t,»)] Jo,w), 0<p <]
yields white noise. We can then also proceed as in [4] to show that we can

also express any u(t,w) satisfying (1.7), also as

t .
u(t,w) = J m(t,P) z(P,w)de
0

where the cperator is Hilbert-Schmidt. The separation theorem follows

easily from this, and we can show that the optimal control is given by

T
uo(t,m) = - f (Q C S(P-1)B)#* X(P,w)dP (3.1)
% A
where
% (p,w) = x (P,W0) + % (P,w)

and hence as in section 2, is the unique solution of

(p,w) = A x(P,w) + B ug (P 50)

K

+ (C PN (y(p,w) - C Rpw))

= U .

)P

x>

(0,w) =




Further we can follow [4], making appropriate modifications of the

unboundedness of C, to deduce from (3.1) that

uo(t,w) = = (Pc(t)B)* x(t,w) £3.2:

where Pc(t) is the solution of

[ﬁc(t)x,y] = [Pc(t)x,Ay] + [Pc(t)Ax,y]
"+ [Qcx, QCy)
- [(Pc(t)B)*x, (Pc(t)B)*y];

P(T) =0 : (3.2
c

for x,y in the damain of A.

o] Ge
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